Search results
Results From The WOW.Com Content Network
Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.
In arithmetic and algebra, the eighth power of a number n is the result of multiplying eight instances of n together. So: n 8 = n × n × n × n × n × n × n × n. Eighth powers are also formed by multiplying a number by its seventh power, or the fourth power of a number by itself. The sequence of eighth powers of integers is:
Zenzizenzizenzic is an obsolete form of mathematical notation representing the eighth power of a number (that is, the zenzizenzizenzic of x is x 8), dating from a time when powers were written out in words rather than as superscript numbers.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.
The following table lists the names of small numbers used in the long and short scales, along with the power of 10, engineering notation, and International System of Units (SI) symbols and prefixes. [1] [page needed] [2] [page needed] [3] [page needed] [4] [5] [6] [7]
A power bank can be a lifesaver for a busy person. Use it to charge phones, tablets, e-readers, headphones and much more. This one by Anker has over 20,000mAh power reserve and provides over four ...
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example: