Search results
Results From The WOW.Com Content Network
About 50 ml of concentrated (>12%) [5] hydrogen peroxide is first mixed with liquid soap or dishwashing detergent. Then, a catalyst, often around 10 ml potassium iodide solution or catalase from baker's yeast, is added to make the hydrogen peroxide decompose very quickly. Hydrogen peroxide breaks down into oxygen and water.
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
High-test peroxide (HTP) is a highly concentrated (85 to 98%) solution of hydrogen peroxide, with the remainder consisting predominantly of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water.
Molecular models of the different molecules active in Piranha solution: peroxysulfuric acid (H 2 SO 5) and hydrogen peroxide (H 2 O 2). Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H 2 SO 4) and hydrogen peroxide (H 2 O 2).
A concentrated hydrogen peroxide solution can be easily decomposed to water and oxygen. An example of a spontaneous (without addition of an external energy source) decomposition is that of hydrogen peroxide which slowly decomposes into water and oxygen (see video at right): 2 H 2 O 2 → 2 H 2 O + O 2
The anthraquinone process, also called the Riedl–Pfleiderer process, is a process for the production of hydrogen peroxide, which was developed by IG Farben in the 1940s., [1] The industrial production of hydrogen peroxide is based on the reduction of oxygen, as in the direct synthesis from the elements.
The decomposition of hydrogen peroxide is catalyzed by transition metals, and iron, manganese and copper are of particular importance in pulp bleaching. The use of chelating agents like EDTA to remove some of these metal ions from the pulp prior to adding peroxide allows the peroxide to be used more efficiently.
A self-accelerating decomposition occurs when the rate of peroxide decomposition is sufficient to generate heat at a faster rate than it can be dissipated to the environment. Temperature is the main factor in determining the decomposition rate, although the size of the package is also important since its dimensions will determine the ability to ...