Search results
Results From The WOW.Com Content Network
Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession. [4] Data science is "a concept to unify statistics, data analysis, informatics, and their related methods" to "understand and analyze actual phenomena" with data. [5]
Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1] Data is collected and analyzed to answer questions, test hypotheses, or disprove theories. [11] Statistician John Tukey, defined data analysis in 1961, as:
Before data mining algorithms can be used, a target data set must be assembled. As data mining can only uncover patterns actually present in the data, the target data set must be large enough to contain these patterns while remaining concise enough to be mined within an acceptable time limit. A common source for data is a data mart or data ...
Data profiling utilizes methods of descriptive statistics such as minimum, maximum, mean, mode, percentile, standard deviation, frequency, variation, aggregates such as count and sum, and additional metadata information obtained during data profiling such as data type, length, discrete values, uniqueness, occurrence of null values, typical string patterns, and abstract type recognition.
Around the 1970s/1980s the term information engineering methodology (IEM) was created to describe database design and the use of software for data analysis and processing. [3] [4] These techniques were intended to be used by database administrators (DBAs) and by systems analysts based upon an understanding of the operational processing needs of organizations for the 1980s.
Data processing is the collection and manipulation of digital data to produce meaningful information. [1] Data processing is a form of information processing , which is the modification (processing) of information in any manner detectable by an observer.
Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.
Master data represents "data about the business entities that provide context for business transactions". [1] The most commonly found categories of master data are parties (individuals and organisations, and their roles, such as customers, suppliers, employees), products, financial structures (such as ledgers and cost centres) and locational concepts.