When.com Web Search

  1. Ads

    related to: tree of primitive pythagorean triples in math examples pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    For each positive integer k, there exist at least k different primitive Pythagorean triples with the same leg a, where a is some positive integer (the length of the even leg is 2mn, and it suffices to choose a with many factorizations, for example a = 4b, where b is a product of k different odd primes; this produces at least 2 k different ...

  4. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Conversely, each Fibonacci Box corresponds to a unique and primitive Pythagorean triple. In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10]

  5. Pythagorean tree - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_tree

    Download as PDF; Printable version; In other projects ... Pythagorean tree may refer to: Tree of primitive Pythagorean triples; Pythagoras tree (fractal) This ...

  6. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.

  7. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    [4] [6] The first three of these define the primitive Pythagorean triples (the ones in which the two sides and hypotenuse have no common factor), derive the standard formula for generating all primitive Pythagorean triples, compute the inradius of Pythagorean triangles, and construct all triangles with sides of length at most 100. [6]

  8. Group of rational points on the unit circle - Wikipedia

    en.wikipedia.org/wiki/Group_of_rational_points...

    The Pythagorean triple (4,3,5) is associated to the rational point (4/5,3/5) on the unit circle. In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x 2 + y 2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples.

  9. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Since (y 2, z, x 2) form a primitive Pythagorean triple, they can be written z = 2de y 2 = d 2 − e 2 x 2 = d 2 + e 2. where d and e are coprime and d > e > 0. Thus, x 2 y 2 = d 4 − e 4. which produces another solution (d, e, xy) that is smaller (0 < d < x). As before, there must be a lower bound on the size of solutions, while this argument ...