Search results
Results From The WOW.Com Content Network
The kinetic theory of gases entails that due to the microscopic reversibility of the gas particles' detailed dynamics, the system must obey the principle of detailed balance. Specifically, the fluctuation-dissipation theorem applies to the Brownian motion (or diffusion ) and the drag force , which leads to the Einstein–Smoluchowski equation ...
Gas kinetics is a science in the branch of fluid dynamics, concerned with the study of motion of gases and its effects on physical systems. Based on the principles of fluid mechanics and thermodynamics , gas dynamics arises from the studies of gas flows in transonic and supersonic flights .
This is a remarkable result since the chemical potentials are intensive system variables, depending only on the local molecular milieu. They cannot "know" whether temperature and pressure (or any other system variables) are going to be held constant over time. It is a purely local criterion and must hold regardless of any such constraints.
In physics, a Tonks–Girardeau gas is a Bose gas in which the repulsive interactions between bosonic particles confined to one dimension dominate the system's physics. It is named after physicists Lewi Tonks , who developed a classical model in 1936, and Marvin D. Girardeau who generalized it to the quantum regime. [ 1 ]
According to the kinetic theory of gases, the temperature of a gas is just a measure of the average kinetic energy of the particles in that gas. For classical ideal gases the velocity distribution of the gas particles is given by Maxwell–Boltzmann. From this distribution, the fraction of particles with a velocity high enough to overcome the ...
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation.The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations.
Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.