When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = ⁠ a n + g n / 2 ⁠, g n + 1 = √ a n g n hold.

  3. Elliptic function - Wikipedia

    en.wikipedia.org/wiki/Elliptic_function

    The relation to elliptic integrals has mainly a historical background. Elliptic integrals had been studied by Legendre, whose work was taken on by Niels Henrik Abel and Carl Gustav Jacobi. Abel discovered elliptic functions by taking the inverse function of the elliptic integral function

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  5. Legendre form - Wikipedia

    en.wikipedia.org/wiki/Legendre_form

    The incomplete elliptic integral of the first kind is defined as, (,) = ⁡ (),the second kind as (,) = ⁡ (),and the third kind as (,,) = (⁡ ()) ⁡ ().The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign.

  6. Carlson symmetric form - Wikipedia

    en.wikipedia.org/wiki/Carlson_symmetric_form

    In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a branch point on the path of integration, making the integral ambiguous. However, if the second argument of R C {\displaystyle R_{C}} , or the fourth argument, p, of R J {\displaystyle R_{J}} is negative, then this results in a simple ...

  7. Landen's transformation - Wikipedia

    en.wikipedia.org/wiki/Landen's_transformation

    Hence, for any , the arithmetic-geometric mean and the complete elliptic integral of the first kind are related by = ⁡ (,) By performing an inverse transformation (reverse arithmetic-geometric mean iteration), that is

  8. Legendre's relation - Wikipedia

    en.wikipedia.org/wiki/Legendre's_relation

    where K and K′ are the complete elliptic integrals of the first kind for values satisfying k 2 + k′ 2 = 1, and E and E′ are the complete elliptic integrals of the second kind. This form of Legendre's relation expresses the fact that the Wronskian of the complete elliptic integrals (considered as solutions of a differential equation) is a ...

  9. Abel elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Abel_elliptic_functions

    Abel's starting point were the elliptic integrals which had been studied in great detail by Adrien-Marie Legendre. He began his research in 1823 when he still was a student. In particular he viewed them as complex functions which at that time were still in their infancy. In the following years Abel continued to explore these functions.