When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  4. Subspace identification method - Wikipedia

    en.wikipedia.org/wiki/Subspace_identification_method

    In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...

  5. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  6. Nonlinear system identification - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system...

    A model class that is general enough to capture this situation is the class of stochastic nonlinear state-space models. A state-space model is usually obtained using first principle laws, [16] such as mechanical, electrical, or thermodynamic physical laws, and the parameters to be identified usually have some physical meaning or significance.

  7. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    By a reduction of the model's associated state space dimension or degrees of freedom, an approximation to the original model is computed which is commonly referred to as a reduced order model. Reduced order models are useful in settings where it is often unfeasible to perform numerical simulations using the complete full order model.

  8. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    To enable handling long data sequences, Mamba incorporates the Structured State Space sequence model (S4). [2] S4 can effectively and efficiently model long dependencies by combining continuous-time, recurrent, and convolutional models. These enable it to handle irregularly sampled data, unbounded context, and remain computationally efficient ...