Search results
Results From The WOW.Com Content Network
This is very useful for computing magnetic force-field of a real magnet; It involves summing a large amount of small forces and you should not do that by hand, but let your computer do that for you; All that the computer program needs to know is the force between small magnets that are at great distance from each other.
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
The amount of this torque is proportional both to the magnetic moment and the external field. A magnet may also be subject to a force driving it in one direction or another, according to the positions and orientations of the magnet and source. If the field is uniform in space, the magnet is subject to no net force, although it is subject to a ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Because the magnetic force is perpendicular to the velocity, it performs no work and requires no energy—nor does it provide any. Thus magnetic fields (like the Earth's) can profoundly affect particle motion in them, but need no energy input to maintain their effect.
Therefore, the magnetic force term of the Lorentz force has no effect, and the force on the charge is given by ′ = ′ =. This demonstrates that the force is the same in both frames (as would be expected), and therefore any observable consequences of this force, such as the induced current, would also be the same in both frames.
In a case when the external magnetic field is non-uniform, there will be a force, proportional to the magnetic field gradient, acting on the magnetic moment itself. There are two expressions for the force acting on a magnetic dipole, depending on whether the model used for the dipole is a current loop or two monopoles (analogous to the electric ...
In these cases, the above three conditions are not mathematically equivalent. For example, the magnetic force satisfies condition 2 (since the work done by a magnetic field on a charged particle is always zero), but does not satisfy condition 3, and condition 1 is not even defined (the force is not a vector field, so one cannot evaluate its curl).