Search results
Results From The WOW.Com Content Network
Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": [1] Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers.
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
Some computer languages have implementations of decimal floating-point arithmetic, including PL/I, .NET, [3] emacs with calc, and Python's decimal module. [4] In 1987, the IEEE released IEEE 854, a standard for computing with decimal floating point, which lacked a specification for how floating-point data should be encoded for interchange with ...
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
IEEE 754 specifies additional floating-point formats, including 32-bit base-2 single precision and, more recently, base-10 representations (decimal floating point). One of the first programming languages to provide floating-point data types was Fortran.
To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5
The IEEE 754 specification—followed by all modern floating-point hardware—requires that the result of an elementary arithmetic operation (addition, subtraction, multiplication, division, and square root since 1985, and FMA since 2008) be correctly rounded, which implies that in rounding to nearest, the rounded result is within 0.5 ulp of ...