Search results
Results From The WOW.Com Content Network
The vagus nerve is also responsible for regulating inflammation in the body, via the inflammatory reflex. [7] Efferent vagus nerve fibers innervating the pharynx and back of the throat are responsible for the gag reflex. In addition, 5-HT 3 receptor-mediated afferent vagus stimulation in the gut due to gastroenteritis is a cause of vomiting. [8]
These nerves release acetylcholine to stimulate two end effects. One, the parietal cells in the body of the stomach are stimulated to release H +. Two, the ECL cells of the lamina propria of the body of the stomach are stimulated to release histamine. Vagal stimulation of the peptidergic neurons, occurring simultaneously, leads to the release ...
Vagal tone is activity of the vagus nerve (the 10th cranial nerve) and a fundamental component of the parasympathetic branch of the autonomic nervous system. This branch of the nervous system is not under conscious control and is largely responsible for the regulation of several body compartments at rest.
Distribution of the areas of the sensory roots upon the surface of the body. Structure of the nervous system; Development of the nervous system; The spinal cord or medulla spinalis; The brain or encephalon The hindbrain or rhombencephalon; The midbrain or mesencephalon; The forebrain or prosencephalon; Composition and central connections of the ...
The vagus nerve, named after the Latin word vagus (because the nerve controls such a broad range of target tissues – vagus in Latin literally means "wandering"), contains parasympathetic fibers that originate in the dorsal nucleus of the vagus nerve and the nucleus ambiguus in the CNS. The vagus nerve can be readily identified in the neck ...
There are twelve cranial nerves, ten of which originate from the brainstem, and mainly control the functions of the anatomic structures of the head with some exceptions. One unique cranial nerve is the vagus nerve, which receives sensory information from organs in the thorax and abdomen.
An action potential (or nerve impulse) is a transient alteration of the transmembrane voltage (or membrane potential) across the membrane in an excitable cell generated by the activity of voltage-gated ion channels embedded in the membrane. The best known action potentials are pulse-like waves that travel along the axons of neurons.
The feedback from the carotid body is sent to the cardiorespiratory centers in the medulla oblongata via the afferent branches of the glossopharyngeal nerve. (The efferent fibers of the aortic body chemoreceptors are relayed by the vagus nerve.) These centers, in turn, regulate breathing and blood pressure, with hypoxia causing an increase in ...