Search results
Results From The WOW.Com Content Network
Under regular addition of polynomials, the sum would contain a term 2x 6.This term becomes 0x 6 and is dropped when the answer is reduced modulo 2.. Here is a table with both the normal algebraic sum and the characteristic 2 finite field sum of a few polynomials:
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
Divide the first term of the dividend by the highest term of the divisor (x 3 ÷ x = x 2). Place the result below the bar. x 3 has been divided leaving no remainder, and can therefore be marked as used by crossing it out. The result x 2 is then multiplied by the second term in the divisor −3 = −3x 2.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
To calculate the whole number quotient of dividing a large number by a small number, the student repeatedly takes away "chunks" of the large number, where each "chunk" is an easy multiple (for example 100×, 10×, 5× 2×, etc.) of the small number, until the large number has been reduced to zero – or the remainder is less than the small ...
These bounds are not invariant by scaling. That is, the roots of the polynomial p(sx) are the quotient by s of the root of p, and the bounds given for the roots of p(sx) are not the quotient by s of the bounds of p. Thus, one may get sharper bounds by minimizing over possible scalings. This gives
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras . Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]