When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. File:E-to-the-i-pi.svg - Wikipedia

    en.wikipedia.org/wiki/File:E-to-the-i-pi.svg

    This mathematical term forms part of an identity, a special case of Euler's formula, written = ⁡ + ⁡ (). Setting x {\displaystyle x} to a value of π {\displaystyle \pi } , as with the above term, Euler's formula reduces to a famous equation relating seven important mathematical symbols (and none that are unimportant!), namely e i π + 1 ...

  5. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  6. Euler function - Wikipedia

    en.wikipedia.org/wiki/Euler_function

    The Euler function may be expressed as a q-Pochhammer symbol: = (;). The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding

  7. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    However, the coefficient of x 12 is −1 because there are seven ways to partition 12 into an even number of distinct parts, but there are eight ways to partition 12 into an odd number of distinct parts, and 7 − 8 = −1. This interpretation leads to a proof of the identity by canceling pairs of matched terms (involution method). [1]

  8. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  9. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    A special case of the above formula is known as Euler's identity, + = Euler elaborated the theory of higher transcendental functions by introducing the gamma function [ 79 ] [ 80 ] and introduced a new method for solving quartic equations . [ 81 ]