Ads
related to: synchronous motors explained
Search results
Results From The WOW.Com Content Network
Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field.
In an industrial plant, synchronous motors can be used to supply some of the reactive power required by induction motors. This improves the plant power factor and reduces the reactive current required from the grid. A synchronous condenser provides stepless automatic power-factor correction with the ability to produce up to 150% additional vars.
In the asynchronous category, we have induction motors, while the synchronous group contains permanent-magnet and current-excited motors. Induction motors have been around since the 19th century.
The synchronous reactances are exhibited by the armature in the steady-state operation of the machine. [8] The three-phase system is viewed as a superposition of two: the direct one, where the maximum of the phase current is reached when the pole is oriented towards the winding and the quadrature one, that is 90° offset.
A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows.
Synchronous speeds for synchronous motors and alternators depend on the number of poles on the machine and the frequency of the supply. The relationship between the supply frequency, f, the number of poles, p, and the synchronous speed (speed of rotating field), n s is given by: = .