Search results
Results From The WOW.Com Content Network
As air flows over mountain barriers, orographic lift can create a variety of cloud effects. Orographic fog is formed as the air rises up the slope and will often envelope the summit. When the air is humid, some of the moisture will fall on the windward slope and on the summit of the mountain.
Wind and moist air are drawn by the prevailing winds towards the top of the mountains, condensing and precipitating before it crosses the top. In an effect opposite that of orographic lift, the air, without much moisture left, advances behind the mountains, creating a drier side called the "rain shadow". [citation needed]
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect.
Effect of a rain shadow The Tibetan Plateau (center), perhaps the best example of a rain shadow. Rainfalls from the southern South Asian monsoon do not make it far past the Himalayas (seen by the snow line at the bottom), leading to an arid climate on the leeward (north) side of the mountain range and the desertification of the Tarim Basin (top).
Orographic or relief rainfall is caused when masses of air are forced up the side of elevated land formations, such as large mountains or plateaus (often referred to as an upslope effect). The lift of the air up the side of the mountain results in adiabatic cooling with altitude, and ultimately condensation and precipitation.
An orographic map of Eastern Siberia from 1875 by Peter Kropotkin. Orography is the study of the topographic relief of mountains, [1] and can more broadly include hills, and any part of a region's elevated terrain. [2] Orography (also known as oreography, orology, or oreology) falls within the broader discipline of geomorphology. [3]
The orographic effect causes rainfall when moist air originating in the Gulf of Mexico and western Atlantic Ocean is forced upwards by the mountains. [29] [30] Winter and spring months see a gradient precipitation pattern, with higher rainfall concentrated in the south. [29]
Heating of solids, sunlight and shade in different altitudinal zones (Northern hemisphere) [5] A variety of environmental factors determines the boundaries of altitudinal zones found on mountains, ranging from direct effects of temperature and precipitation to indirect characteristics of the mountain itself, as well as biological interactions of the species.