Search results
Results From The WOW.Com Content Network
An arsenal of DNA repair mechanisms exists to repair various forms of damaged DNA and minimize genomic instability. Most DNA repair mechanisms require an intact DNA strand as template to fix the damaged strand. DNA damage prevents the normal enzymatic synthesis of DNA by the replication fork.
The DNA repair mechanism involving photolyases is called photoreactivation. They mainly convert pyrimidine dimers into a normal pair of pyrimidine bases. Photo reactivation, the first DNA repair mechanism to be discovered, was described initially by Albert Kelner in 1949 [3] and independently by Renato Dulbecco also in 1949. [4] [5] [6]
Dsup is known to bind to free DNA, but it binds more tightly to nucleosomes, the typical packed form of DNA in eukaryotic cells. Its nucleosome binding domain is vaguely similar to the one in HMGN proteins. [10] Dsup localized to nuclear DNA reduces single-strand breaks and double-strand breaks when subjected to ionizing radiation. [11]
DNA damage response mechanisms trigger cell-cycle arrest, and attempt to repair DNA lesions or promote cell death/senescence if repair is not possible. Replication stress is observed in preneoplastic cells due to increased proliferation signals from oncogenic mutations.
Homology-directed repair (HDR) is a mechanism in cells to repair double-strand DNA lesions. [1] The most common form of HDR is homologous recombination. The HDR mechanism can only be used by the cell when there is a homologous piece of DNA present in the nucleus, mostly in G2 and S phase of the cell cycle. Other examples of homology-directed ...
NHEJ is a DNA repair mechanism which, unlike homologous recombination, does not require a long homologous sequence to guide repair. Whether homologous recombination or NHEJ is used to repair double-strand breaks is largely determined by the phase of cell cycle. Homologous recombination repairs DNA before the cell enters mitosis (M phase).
Nucleotide excision repair (NER) is a particularly important excision mechanism that removes DNA damage induced by ultraviolet light (UV). UV DNA damage results in bulky DNA adducts — these adducts are mostly thymine dimers and 6,4-photoproducts. Recognition of the damage leads to removal of a short single-stranded DNA segment that contains ...
INO80 and SWI/SNF-family remodelers participate in DNA double-strand break (DSB) repair and nucleotide-excision repair (NER) and thereby plays crucial role in TP53 mediated DNA-damage response. NuRD/Mi-2/ CHD remodeling complexes primarily mediate transcriptional repression in the nucleus and are required for the maintenance of pluripotency of ...