When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.

  4. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Text-to-image models began to be developed in the mid-2010s during the beginnings of the AI boom , as a result of advances in deep neural networks .

  5. Topic model - Wikipedia

    en.wikipedia.org/wiki/Topic_model

    The author-topic model by Rosen-Zvi et al. [13] models the topics associated with authors of documents to improve the topic detection for documents with authorship information. HLTA was applied to a collection of recent research papers published at major AI and Machine Learning venues. The resulting model is called The AI Tree.

  6. tf–idf - Wikipedia

    en.wikipedia.org/wiki/Tf–idf

    TfidfTransformer in scikit-learn; Text to Matrix Generator (TMG) MATLAB toolbox that can be used for various tasks in text mining (TM) specifically i) indexing, ii) retrieval, iii) dimensionality reduction, iv) clustering, v) classification. The indexing step offers the user the ability to apply local and global weighting methods, including tf ...

  7. Latin hypercube sampling - Wikipedia

    en.wikipedia.org/wiki/Latin_hypercube_sampling

    In Latin hypercube sampling one must first decide how many sample points to use and for each sample point remember in which row and column the sample point was taken. Such configuration is similar to having N rooks on a chess board without threatening each other. In orthogonal sampling, the sample space is partitioned into equally probable ...

  8. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  9. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    In mixture of softmaxes, the model outputs multiple vectors ,, …,,, and predict the next word as = (,), where is a probability distribution by a linear-softmax operation on the activations of the hidden neurons within the model. The original paper demonstrated its effectiveness for recurrent neural networks. This was later found to work for ...