Search results
Results From The WOW.Com Content Network
The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates; Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares) The British flag theorem for rectangles equates two sums of two ...
The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.
The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...
Least trimmed squares (LTS), or least trimmed sum of squares, is a robust statistical method that fits a function to a set of data whilst not being unduly affected by the presence of outliers [1]. It is one of a number of methods for robust regression .
It is calculated as the sum of squares of the prediction residuals for those observations. [ 1 ] [ 2 ] [ 3 ] Specifically, the PRESS statistic is an exhaustive form of cross-validation , as it tests all the possible ways that the original data can be divided into a training and a validation set.
In statistical data analysis the total sum of squares (TSS or SST) is a quantity that appears as part of a standard way of presenting results of such analyses. For a set of observations, y i , i ≤ n {\displaystyle y_{i},i\leq n} , it is defined as the sum over all squared differences between the observations and their overall mean y ...
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the components of the sum, and thus minimizing the sum. In this sense, the algorithm is also an effective method for solving overdetermined systems of equations .