When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  3. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.

  4. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    The inhomogeneous Maxwell equation leads to the continuity equation: =, = implying conservation of charge. Maxwell's laws above can be generalised to curved spacetime by simply replacing partial derivatives with covariant derivatives:

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  6. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  8. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  9. On Physical Lines of Force - Wikipedia

    en.wikipedia.org/wiki/On_Physical_Lines_of_Force

    In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "molecular vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/56 when "On Faraday's Lines of Force" [ 2 ] was read to the Cambridge Philosophical Society .