Search results
Results From The WOW.Com Content Network
Caffeine keeps you awake by blocking adenosine receptors. Each type of adenosine receptor has different functions, although with some overlap. [3] For instance, both A 1 receptors and A 2A play roles in the heart, regulating myocardial oxygen consumption and coronary blood flow, while the A 2A receptor also has broader anti-inflammatory effects throughout the body. [4]
A 1 receptors are implicated in sleep promotion by inhibiting wake-promoting cholinergic neurons in the basal forebrain. [6] A 1 receptors are also present in smooth muscle throughout the vascular system. [7] The adenosine A 1 receptor has been found to be ubiquitous throughout the entire body. [citation needed]
Neurotransmitter receptor – membrane receptor that can be activated by a neurotransmitter. Interactions between neurotransmitters and neurotransmitter receptors can evoke a wide range of differing responses from the cell receiving the signal, including excitation, inhibition, and various types of modulation. Category:Receptors
It involves the activation of purinergic receptors in the cell and/or in nearby cells, thereby regulating cellular functions. [ 1 ] It was proposed after Adenosine triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, noncholinergic neurotransmission .
The actions of the A 2A receptor are complicated by the fact that a variety of functional heteromers composed of a mixture of A 2A subunits with subunits from other unrelated G-protein coupled receptors have been found in the brain, adding a further degree of complexity to the role of adenosine in modulation of neuronal activity.
In addition, A 1 receptors couple to G o, which has been reported to mediate adenosine inhibition of Ca 2+ conductance, whereas A 2B and A 3 receptors also couple to G q and stimulate phospholipase activity. Researchers at Cornell University have recently shown adenosine receptors to be key in opening the blood-brain barrier (BBB).
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord.The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts.
Functions of these four cranial nerves (V-VIII) include regulation of respiration, control of involuntary actions, sensory roles in hearing, equilibrium, and taste, and in facial sensations such as touch and pain, as well as motor roles in eye movement, facial expressions, chewing, swallowing, and the secretion of saliva and tears.