Search results
Results From The WOW.Com Content Network
Proteins that have high hydrophobic amino acid content on the surface have low solubility in an aqueous solvent. Charged and polar surface residues interact with ionic groups in the solvent and increase the solubility of a protein. Knowledge of a protein's amino acid composition will aid in determining an ideal precipitation solvent and methods.
Unwanted proteins can be removed from a protein solution mixture by salting out as long as the solubility of the protein in various concentrations of salt solution is known. After removing the precipitate by filtration or centrifugation , the desired protein can be precipitated by altering the salt concentration to the level at which the ...
Immunoprecipitation of intact protein complexes (i.e. antigen along with any proteins or ligands that are bound to it) is known as co-immunoprecipitation (Co-IP). Co-IP works by selecting an antibody that targets a known protein that is believed to be a member of a larger complex of proteins.
Proteins differ markedly in their solubilities at high ionic strength, therefore, "salting out" is a very useful procedure to assist in the purification of the desired protein. Ammonium sulfate is commonly used for precipitation because of its high solubility, additionally, it forms two ions high in the Hofmeister series.
As proteins have complex tertiary and quaternary structures due to their specific folding and various weak intermolecular interactions (e.g., hydrogen bridges), these superstructures can be modified and proteins denaturated and precipitated. Another important application of an antisolvent is in ethanol precipitation of DNA.
The protein manufacturing cost remains high and there is a growing demand to develop cost efficient and rapid protein purification methods. Understanding of the different protein purification methods and optimizing the downstream processing are critical to minimize production costs while maintaining the quality of acceptable standards of homogeneity. [2]
Briefly, the conventional method is as follows: DNA and associated proteins on chromatin in living cells or tissues are crosslinked (this step is omitted in Native ChIP). The DNA-protein complexes (chromatin-protein) are then sheared into ~500 bp DNA fragments by sonication or nuclease digestion.
As this method involves at least 2 rounds of washing, it may not be suitable for screening transient protein interactions, unlike the yeast two-hybrid method or in vivo crosslinking with photo-reactive amino acid analogs. However, it is a good method for testing stable protein interactions and allows various degrees of investigation by ...