Search results
Results From The WOW.Com Content Network
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
While research into this nozzle continues, it could be used before all its advantages are developed. As an upper stage, where it would be used in a low ambient pressure/vacuum environment specifically in closed wake mode, an E-D nozzle would offer weight reductions, length reductions and a potential increase to the specific impulse over bell nozzles (depending on engine cycle) allowing ...
The four expansion regimes of a de Laval nozzle: • under-expanded • perfectly expanded • over-expanded • grossly over-expanded. The most commonly used nozzle is the de Laval nozzle, a fixed geometry nozzle with a high expansion-ratio. The large bell- or cone-shaped nozzle extension beyond the throat gives the rocket engine its ...
The expanding nozzle is a type of rocket nozzle that, unlike traditional designs, maintains its efficiency at a wide range of altitudes. It is a member of the class of altitude compensating nozzles, a class that also includes the plug nozzle and aerospike. While the expanding nozzle is the least technically advanced and simplest to understand ...
Altitude compensating nozzles address this loss of efficiency by changing the shape or volume of the rocket nozzle as the rocket climbs through the atmosphere. There are a wide variety of designs that achieve this goal, with the aerospike being perhaps the most studied among them. Aerospike engine; Plug nozzle; Expanding nozzle
Figure 1: A Converging Nozzle. Consider a converging nozzle connecting a reservoir with a receiver. If the reservoir pressure is held constant and the receiver pressure reduced, the Mach number at the exit of the nozzle will increase until M e = 1 is reached, indicated by the left curve in figure 2.
The nozzle opens up in two halves which come together to redirect the exhaust partially forward. Since the nozzle area has an influence on the operation of the engine (see below), the deployed thrust reverser has to be spaced the correct distance from the jetpipe to prevent changes in engine operating limits. [16]
Expander rocket cycle. Expander rocket engine (closed cycle). Heat from the nozzle and combustion chamber powers the fuel and oxidizer pumps. The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase.