When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The graph of the function f(x) = √x, made up of half a parabola with a vertical directrix. The principal square root function () = (usually just referred to as the "square root function") is a function that maps the set of nonnegative real numbers onto itself.

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose ...

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  6. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  7. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    So one continuous motion in the complex plane has transformed the positive square root e 0 = 1 into the negative square root e iπ = −1. This problem arises because the point z = 0 has just one square root, while every other complex number z ≠ 0 has exactly two square roots.

  8. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed.

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1]