Ads
related to: indices examples and solutions for algebra 6smartholidayshopping.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.
The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example:
Hilbert's basis theorem (commutative algebra,invariant theory) Hilbert's Nullstellensatz (theorem of zeroes) (commutative algebra, algebraic geometry) Hilbert–Schmidt theorem (functional analysis) Hilbert–Speiser theorem (cyclotomic fields) Hilbert–Waring theorem (number theory) Hilbert's irreducibility theorem (number theory)
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before.
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.