Ad
related to: class 8 friction extra questions chapter 1 answers
Search results
Results From The WOW.Com Content Network
For instance, the factor "153,552,935" (5 turns around a capstan with a coefficient of friction of 0.6) means, in theory, that a newborn baby would be capable of holding (not moving) the weight of two USS Nimitz supercarriers (97,000 tons each, but for the baby it would be only a little more than 1 kg). The large number of turns around the ...
Triboelectric charge plays a major role in industries such as packaging of pharmaceutical powders, [3] [7] and in many processes such as dust storms [8] and planetary formation. [9] It can also increase friction and adhesion. While many aspects of the triboelectric effect are now understood and extensively documented, significant disagreements ...
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.
Figure 1 Hard wheel rolling on and deforming a soft surface, resulting in the reaction force R from the surface having a component that opposes the motion. (W is some vertical load on the axle, F is some towing force applied to the axle, r is the wheel radius, and both friction with the ground and friction at the axle are assumed to be negligible and so are not shown.
The preload achieved by torquing a bolt is caused by the part of the torque that is effective. Friction in the threads and under the nut or bolt head uses up some fraction of the applied torque. Much of the torque applied is lost overcoming friction under the torqued bolt head or nut (50%) and in the threads (40%).