When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  4. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative infinity. A first-order filter's response rolls off at −6 dB per octave (−20 dB per decade) (all first-order lowpass filters have the same normalized frequency response). A second-order filter decreases at −12 dB per octave, a third-order at −18 dB ...

  5. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...

  6. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [ 1 ] [ 2 ] [ 3 ] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response .

  7. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  8. Normalized frequency (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Normalized_frequency...

    Example of plotting samples of a frequency distribution in the unit "bins", which are integer values. A scale factor of 0.7812 converts a bin number into the corresponding physical unit (hertz). A common practice is to sample the frequency spectrum of the sampled data at frequency intervals of f s N , {\displaystyle {\tfrac {f_{s}}{N}},} for ...

  9. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.