When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 3D reconstruction - Wikipedia

    en.wikipedia.org/wiki/3D_reconstruction

    Machine Learning Based Solutions Machine learning enables learning the correspondance between the subtle features in the input and the respective 3D equivalent. Deep neural networks have shown to be highly effective for 3D reconstruction from a single color image. [15] This works even for non-photorealistic input images such as sketches.

  3. 3D Gaussian splatting - Wikipedia

    en.wikipedia.org/wiki/Gaussian_splatting

    Gaussian splatting model of a collapsed building taken from drone footage. 3D Gaussian splatting is a technique used in the field of real-time radiance field rendering. [3] It enables the creation of high-quality real-time novel-view scenes by combining multiple photos or videos, addressing a significant challenge in the field.

  4. 3D reconstruction from multiple images - Wikipedia

    en.wikipedia.org/wiki/3D_Reconstruction_from...

    This method uses X-ray images for 3D Reconstruction and to develop 3D models with low dose radiations in weight bearing positions. In NSCC algorithm, the preliminary step is calculation of an initial solution. Firstly anatomical regions from the generic object are defined. Secondly, manual 2D contours identification on the radiographs is performed.

  5. Structure from motion - Wikipedia

    en.wikipedia.org/wiki/Structure_from_motion

    This is known as motion parallax, and this depth information can be used to generate an accurate 3D representation of the world around them. [2] Finding structure from motion presents a similar problem to finding structure from stereo vision. In both instances, the correspondence between images and the reconstruction of 3D object needs to be found.

  6. Perspective-n-Point - Wikipedia

    en.wikipedia.org/wiki/Perspective-n-Point

    Perspective-n-Point [1] is the problem of estimating the pose of a calibrated camera given a set of n 3D points in the world and their corresponding 2D projections in the image. The camera pose consists of 6 degrees-of-freedom (DOF) which are made up of the rotation (roll, pitch, and yaw) and 3D translation of the camera with respect to the world.

  7. Moving least squares - Wikipedia

    en.wikipedia.org/wiki/Moving_least_squares

    Moving least squares is a method of reconstructing continuous functions from a set of unorganized point samples via the calculation of a weighted least squares measure biased towards the region around the point at which the reconstructed value is requested.

  8. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation. Tensorboard, the visualization kit associated with TensorFlow, also implements t-SNE (online version) The Julia package TSne implements t-SNE

  9. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    One group of deep learning reconstruction algorithms apply post-processing neural networks to achieve image-to-image reconstruction, where input images are reconstructed by conventional reconstruction methods. Artifact reduction using the U-Net in limited angle tomography is such an example application. [6]