Search results
Results From The WOW.Com Content Network
An immersion is precisely a local embedding – that is, for any point x ∈ M there is a neighbourhood, U ⊆ M, of x such that f : U → N is an embedding, and conversely a local embedding is an immersion. [3] For infinite dimensional manifolds, this is sometimes taken to be the definition of an immersion. [4]
On-the-job training (widely known as OJT) is an important topic of human resource management. It helps develop the career of the individual and the prosperous growth of the organization. On-the-job training is a form of training provided at the workplace. During the training, employees are familiarized with the working environment they will ...
The axiomatic method of Euclid's Elements was influential in the development of Western science. [1]Mathematical practice comprises the working practices of professional mathematicians: selecting theorems to prove, using informal notations to persuade themselves and others that various steps in the final proof are convincing, and seeking peer review and publication, as opposed to the end ...
If f: M → N is a submersion at p and f(p) = q ∈ N, then there exists an open neighborhood U of p in M, an open neighborhood V of q in N, and local coordinates (x 1, …, x m) at p and (x 1, …, x n) at q such that f(U) = V, and the map f in these local coordinates is the standard projection
The notion of a closed immersion is local in the sense that f is a closed immersion if and only if for some (equivalently every) open covering = the induced map : is a closed immersion. [ 5 ] [ 6 ] If the composition Z → Y → X {\displaystyle Z\to Y\to X} is a closed immersion and Y → X {\displaystyle Y\to X} is separated , then Z → Y ...
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.
A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. For example, the prime number theorem — originally proved using techniques of complex analysis — was once thought to be a deep result until elementary proofs were found. [1]