Search results
Results From The WOW.Com Content Network
Myc is a family of regulator genes and proto-oncogenes that code for transcription factors. The Myc family consists of three related human genes: c-myc , l-myc , and n-myc . c-myc (also sometimes referred to as MYC) was the first gene to be discovered in this family, due to homology with the viral gene v-myc.
Rearrangement of dimers (e.g., Mad:Max, Max:Myc) provides a system of transcriptional regulation with greater diversity of gene targets. Max must dimerise in order to be biologically active. [7] Transcriptionally active hetero- and homodimers involving Max can promote cell proliferation as well as apoptosis. [8]
Specifically, two biogenesis regulators—PGC1α and c-Myc—can be targeted to prevent cancer proliferation. PGC1α is a key component in mitochondrial biogenesis—as a transcriptional coactivator, it targets multiple transcription factors and the estrogen-related receptor alpha (ERRα). [25]
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
Many transcription factors, especially some that are proto-oncogenes or tumor suppressors, help regulate the cell cycle and as such determine how large a cell will get and when it can divide into two daughter cells. [32] [33] One example is the Myc oncogene, which has important roles in cell growth and apoptosis. [34]
From these conclusions about plants and animals, two of the three tenets of cell theory were postulated. 1. All living organisms are composed of one or more cells 2. The cell is the most basic unit of life. Schleiden's theory of free cell formation through crystallization was refuted in the 1850s by Robert Remak, Rudolf Virchow, and Albert ...
Regulation of transcription in mammals. An active enhancer regulatory region of DNA is enabled to interact with the promoter DNA region of its target gene by the formation of a chromosome loop. This can initiate messenger RNA (mRNA) synthesis by RNA polymerase II (RNAP II) bound to the promoter at the transcription start site of the gene.
The MYCN gene is a member of the MYC family of transcription factors and encodes a protein with a basic helix-loop-helix domain. This protein is located in the cell nucleus and must dimerize with another bHLH protein in order to bind DNA. [5] N-Myc is highly expressed in the fetal brain and is critical for normal brain development. [6]