When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.

  3. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  4. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  6. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    A similar complex multiplication algorithm multiplies two complex numbers using 3 real multiplications instead of 4 Toom-Cook algorithm , a faster generalization of the Karatsuba algorithm that permits recursive divide-and-conquer decomposition into more than 2 blocks at a time

  7. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The lower bound of multiplications needed is 2mn+2n−m−2 (multiplication of n×m-matrices with m×n-matrices using the substitution method, m⩾n⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34. [40] For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.

  8. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  9. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  1. Related searches multiplying lists using scalars python 8 2 3 4 5 image ratio

    multiplying lists using scalars python 8 2 3 4 5 image ratio example8-2 3/4 answer
    how to solve 8 - 2 3/4 =