When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .

  3. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. [1] [2]

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is an axiomatic system, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry, these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true. However, Euclid's reasoning from assumptions ...

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry ...

  6. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    This describes the scenario where the undefined terms of a first axiom system are provided definitions from a second, such that the axioms of the first are theorems of the second. A good example is the relative consistency of absolute geometry with respect to the theory of the real number system.

  7. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    Also, in universal algebra, a variety is a class of algebraic structures that share the same operations, and the same axioms, with the condition that all axioms are identities. What precedes shows that existential axioms of the above form are accepted in the definition of a variety. Here are some of the most common existential axioms. Identity ...

  8. Archimedean property - Wikipedia

    en.wikipedia.org/wiki/Archimedean_property

    It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder. [ 2 ] The notion arose from the theory of magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert 's axioms for geometry , and the theories of ordered groups ...

  9. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates , and at present called axioms .