Search results
Results From The WOW.Com Content Network
For instance, the UPC-A barcode for a box of tissues is "036000241457". The last digit is the check digit "7", and if the other numbers are correct then the check digit calculation must produce 7. Add the odd number digits: 0+6+0+2+1+5 = 14. Multiply the result by 3: 14 × 3 = 42. Add the even number digits: 3+0+0+4+4 = 11.
A UPC barcode. The Universal Product Code (UPC or UPC code) is a barcode symbology that is used worldwide for tracking trade items in stores.. The chosen symbology has bars (or spaces) of exactly 1, 2, 3, or 4 units wide each; each decimal digit to be encoded consists of two bars and two spaces chosen to have a total width of 7 units, in both an "even" and an "odd" parity form, which enables ...
The check digit (as calculated above) for this sequence is 4. Once you have calculated your check digit, simply map each character in the string to be encoded using the table above as a reference to get the binary map of the bar code; remember to precede the code with "start" and to end it with "stop" For example, to map the string 1234567 with ...
For the end user, Code 128 barcodes may be generated by either an outside application to create an image of the barcode, or by a font-based barcode solution. Either solution requires the use of an application or an application add in to calculate the check digit and create the barcode.
Here is how to do the checksum calculation: Take the value (0 through 42) of each character in the barcode excluding start and stop codes. Sum the values. Divide the result by 10 (for Mod 10 check digit) or by 43 (for Mod 43 check digit). The remainder is the value of the checksum character to be appended.
The check digit is computed as follows: Drop the check digit from the number (if it's already present). This leaves the payload. Start with the payload digits. Moving from right to left, double every second digit, starting from the last digit. If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits).
The checksum digit is the digit which must be added to this checksum to get a number divisible by 10 (i.e. the additive inverse of the checksum, modulo 10). [8] See ISBN-13 check digit calculation for a more extensive description and algorithm. The Global Location Number (GLN) also uses the same method.
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.