Search results
Results From The WOW.Com Content Network
In dimension three, all rigid motions are also screw motions (this is Chasles' theorem) In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object will keep the same shape and size after a proper rigid transformation.
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a screw displacement. A direct Euclidean isometry in three dimensions involves a translation and a rotation. The screw displacement representation of the isometry decomposes the translation into two components, one ...
The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as [26] or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]