Search results
Results From The WOW.Com Content Network
The tangent bundle comes equipped with a natural topology (not the disjoint union topology) and smooth structure so as to make it into a manifold in its own right. The dimension of is twice the dimension of . Each tangent space of an n-dimensional manifold is an n-dimensional vector space
The definitions of the tangent bundle, the unit tangent bundle and the (oriented orthonormal) frame bundle F can be extended to arbitrary surfaces in the usual way. [7] [15] There is a similar identification between the latter two which again become principal SO(2)-bundles. In other words: The frame bundle is a principal bundle with structure ...
In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a P n -bundle if it is locally a projective n -space; i.e., X × S U ≃ P U n {\displaystyle X\times _{S}U\simeq \mathbb {P} _{U}^{n}} and transition automorphisms are linear.
which takes each point of the bundle to its base point. The fiber π −1 (x) over each point x ∈ M is an (n−1)-sphere S n−1, where n is the dimension of M. The unit tangent bundle is therefore a sphere bundle over M with fiber S n−1. The definition of unit sphere bundle can easily accommodate Finsler manifolds as well.
The tangent space of at , denoted by , is then defined as the set of all tangent vectors at ; it does not depend on the choice of coordinate chart :. The tangent space T x M {\displaystyle T_{x}M} and a tangent vector v ∈ T x M {\displaystyle v\in T_{x}M} , along a curve traveling through x ∈ M {\displaystyle x\in M} .
The tangent bundle of projective space over a field can be described in terms of the line bundle (). Namely, there is a short exact sequence, the Euler sequence : 0 → O P n → O ( 1 ) ⊕ n + 1 → T P n → 0. {\displaystyle 0\to {\mathcal {O}}_{\mathbb {P} ^{n}}\to {\mathcal {O}}(1)^{\oplus \;n+1}\to T\mathbb {P} ^{n}\to 0.}
An ovoid in a 3-dimensional projective space is a set of points, which a) is intersected by lines in 0, 1, or 2 points and b) its tangents at an arbitrary point covers a plane (tangent plane). The geometry of an ovoid in projective 3-space is a Möbius plane, called an ovoidal Möbius plane. The point set of the geometry consists of the points ...
For example, when f is a smooth morphism, is simply a vector bundle, known as the tangent bundle along the fibers of f. Using A 1 -homotopy theory , the Grothendieck–Riemann–Roch theorem has been extended by Navarro & Navarro (2017) to the situation where f is a proper map between two smooth schemes.