Search results
Results From The WOW.Com Content Network
Motion planning algorithms might address robots with a larger number of joints (e.g., industrial manipulators), more complex tasks (e.g. manipulation of objects), different constraints (e.g., a car that can only drive forward), and uncertainty (e.g. imperfect models of the environment or robot). Motion planning has several robotics applications ...
Robotics engineering is a branch of engineering that focuses on the conception, design, manufacturing, and operation of robots. It involves a multidisciplinary approach, drawing primarily from mechanical , electrical , software , and artificial intelligence (AI) engineering .
Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.
OMPL (Open Motion Planning Library) is a software package for computing motion plans using sampling-based algorithms.The content of the library is limited to motion planning algorithms, which means there is no environment specification, no collision detection or visualization.
Robotic mapping is a discipline related to computer vision [1] and cartography. The goal for an autonomous robot is to be able to construct (or use) a map (outdoor use) or floor plan (indoor use) and to localize itself and its recharging bases or beacons in it.
This type of robotics software has a simulator that is a virtual robot, which can emulate the motion of a physical robot in a real work envelope. Some robotics simulators use a physics engine for more realistic motion generation of the robot. The use of a robotics simulator to develop a robotics control program is highly recommended regardless ...
Robot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localization, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates.
The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base ...