When.com Web Search

  1. Ad

    related to: linear matrix inequality

Search results

  1. Results From The WOW.Com Content Network
  2. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  3. Finsler's lemma - Wikipedia

    en.wikipedia.org/wiki/Finsler's_lemma

    Finsler's lemma can be used to give novel linear matrix inequality (LMI) characterizations to stability and control problems. [4] The set of LMIs stemmed from this procedure yields less conservative results when applied to control problems where the system matrices has dependence on a parameter, such as robust control problems and control of ...

  4. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    In mathematics a linear inequality is an inequality which involves a linear function. ... where A is an m×n matrix, x is an n×1 column vector of variables, ...

  5. Kalman–Yakubovich–Popov lemma - Wikipedia

    en.wikipedia.org/wiki/Kalman–Yakubovich–Popov...

    It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain. The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich [ 1 ] where it was stated that for the strict frequency inequality.

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  7. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation. [3]

  8. Polynomial SOS - Wikipedia

    en.wikipedia.org/wiki/Polynomial_SOS

    To establish whether a form h(x) is SOS amounts to solving a convex optimization problem. Indeed, any h(x) can be written as = {} ′ (+ ()) {} where {} is a vector containing a base for the forms of degree m in x (such as all monomials of degree m in x), the prime ′ denotes the transpose, H is any symmetric matrix satisfying = {} ′ {} and () is a linear parameterization of the linear ...

  9. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:

  1. Ad

    related to: linear matrix inequality