Search results
Results From The WOW.Com Content Network
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
The derivative of this potential is the negative of the electric field generated. The first derivatives of the field, or the second derivatives of the potential, is the electric field gradient. The nine components of the EFG are thus defined as the second partial derivatives of the electrostatic potential, evaluated at the position of a nucleus:
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
For a vector field = (, …,), also called a tensor field of order 1, the gradient or total derivative is the n × n Jacobian matrix: = = = (). For a tensor field T {\displaystyle \mathbf {T} } of any order k , the gradient grad ( T ) = d T = ( ∇ T ) T {\displaystyle \operatorname {grad} (\mathbf {T} )=d\mathbf {T} =(\nabla \mathbf {T ...
Given a Morse function f on a manifold M, a gradient-like vector field X for the function f is, informally: away from critical points, X points "in the same direction as" the gradient of f, and; near a critical point (in the neighborhood of a critical point), it equals the gradient of f, when f is written in standard form given in the Morse ...
In the case of the gravitational field g, which can be shown to be conservative, [3] it is equal to the gradient in gravitational potential Φ: =. There are opposite signs between gravitational field and potential, because the potential gradient and field are opposite in direction: as the potential increases, the gravitational field strength decreases and vice versa.