When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  5. Statistica - Wikipedia

    en.wikipedia.org/wiki/STATISTICA

    Statistica is a suite of analytics software originally developed by StatSoft and acquired by Dell in March 2014. The software includes an array of data analysis, data management, data visualization, and data mining procedures; as well as a variety of predictive modeling, clustering, classification, and exploratory techniques. [2]

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Unlike many previous methods, the gap statistics can tell us that there is no value of k for which there is a good clustering, but the reliability depends on how plausible the assumed null distribution (e.g., a uniform distribution) is on the given data. This tends to work well in synthetic settings, but cannot handle difficult data sets with ...

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Methods have been developed to improve and automate existing hierarchical clustering algorithms [5] such as an automated version of single linkage hierarchical cluster analysis (HCA). This computerized method bases its success on a self-consistent outlier reduction approach followed by the building of a descriptive function which permits ...

  8. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The basic principle of divisive clustering was published as the DIANA (DIvisive ANAlysis clustering) algorithm. [20] Initially, all data is in the same cluster, and the largest cluster is split until every object is separate. Because there exist () ways of splitting each cluster, heuristics are needed. DIANA chooses the object with the maximum ...

  9. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    The method is also known as nearest neighbour clustering. The result of the clustering can be visualized as a dendrogram, which shows the sequence in which clusters were merged and the distance at which each merge took place. [3] Mathematically, the linkage function – the distance D(X,Y) between clusters X and Y – is described by the expression

  1. Related searches overview of basic clustering methods in statistics free download 64 bit

    k means clustering methodsk means clustering algorithm
    gaussian clusteringk means clustering wikipedia