Search results
Results From The WOW.Com Content Network
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission.The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977.
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. [1] [2] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions.
Key exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. In the Diffie–Hellman key exchange scheme, each party generates a public/private key pair and distributes the public key. After obtaining an authentic copy of each other's ...
A public key infrastructure (PKI) is a system for the creation, storage, and distribution of digital certificates which are used to verify that a particular public key belongs to a certain entity. The PKI creates digital certificates which map public keys to entities, securely stores these certificates in a central repository and revokes them ...
The Diffie–Hellman key exchange method allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel. This key can then be used to encrypt subsequent communications using a symmetric-key cipher. Diffie–Hellman is used to secure a variety of Internet services. However ...
An associative array stores a set of (key, value) pairs and allows insertion, deletion, and lookup (search), with the constraint of unique keys. In the hash table implementation of associative arrays, an array A {\displaystyle A} of length m {\displaystyle m} is partially filled with n {\displaystyle n} elements, where m ≥ n {\displaystyle m ...
The first party, Alice, generates a key pair as follows: Generate an efficient description of a cyclic group of order with generator. Let represent the identity element of . It is not necessary to come up with a group and generator for each new key.
The factorization of N and the private key d are kept secret, so that only Bob can decrypt the message. We denote the private key pair as (d, N). The encryption of the message M is given by C ≡ M e (mod N) and the decryption of cipher text C is given by C d ≡ (M e) d ≡ M ed ≡ M (mod N) (using Fermat's little theorem).