When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  3. Translation (biology) - Wikipedia

    en.wikipedia.org/wiki/Translation_(biology)

    In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum through a process called co-translational translocation.

  4. Bacterial cell structure - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cell_structure

    Since the cell wall is required for bacterial survival, but is absent in some eukaryotes, several antibiotics (notably the penicillins and cephalosporins) stop bacterial infections by interfering with cell wall synthesis, while having no effects on human cells which have no cell wall, only a cell membrane.

  5. Translational regulation - Wikipedia

    en.wikipedia.org/wiki/Translational_regulation

    The hallmark difference of elongation in eukaryotes in comparison to prokaryotes is its separation from transcription. While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes.

  6. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...

  7. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...

  8. Ribosome - Wikipedia

    en.wikipedia.org/wiki/Ribosome

    In eukaryotic cells, ribosomes are often associated with the intracellular membranes that make up the rough endoplasmic reticulum. Ribosomes from bacteria, archaea, and eukaryotes (in the three-domain system) resemble each other to a remarkable degree, evidence of a common origin. They differ in their size, sequence, structure, and the ratio of ...

  9. Eukaryote - Wikipedia

    en.wikipedia.org/wiki/Eukaryote

    The defining feature of eukaryotes is that their cells have a well-defined, membrane-bound nuclei, distinguishing them from prokaryotes that lack such a structure. Eukaryotic cells have a variety of internal membrane-bound structures, called organelles , and a cytoskeleton which defines the cell's organization and shape.