When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The polynomials, exponential function e x, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b.

  4. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    This proof of the multinomial theorem uses the binomial theorem and induction on m.. First, for m = 1, both sides equal x 1 n since there is only one term k 1 = n in the sum. For the induction step, suppose the multinomial theorem holds for m.

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Conversely, shows that any integer-valued polynomial is an integer linear combination of these binomial coefficient polynomials. More generally, for any subring R of a characteristic 0 field K , a polynomial in K [ t ] takes values in R at all integers if and only if it is an R -linear combination of binomial coefficient polynomials.

  6. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    This expansion is used to develop the normal multipole expansion. Conversely, if the radius r of the observation point P is smaller than a, the potential may still be expanded in the Legendre polynomials as above, but with a and r exchanged. This expansion is the basis of interior multipole expansion.

  8. Polynomial chaos - Wikipedia

    en.wikipedia.org/wiki/Polynomial_chaos

    Polynomial chaos (PC), also called polynomial chaos expansion (PCE) and Wiener chaos expansion, is a method for representing a random variable in terms of a polynomial function of other random variables. The polynomials are chosen to be orthogonal with respect to the joint probability distribution of these random variables.

  9. Puiseux series - Wikipedia

    en.wikipedia.org/wiki/Puiseux_series

    If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).