Search results
Results From The WOW.Com Content Network
The area K of an orthodiagonal quadrilateral equals one half the product of the lengths of the diagonals p and q: [8] K = p q 2 . {\displaystyle K={\frac {pq}{2}}.} Conversely, any convex quadrilateral where the area can be calculated with this formula must be orthodiagonal. [ 6 ]
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
Crossed rectangle: an antiparallelogram whose sides are two opposite sides and the two diagonals of a rectangle, hence having one pair of parallel opposite sides. Crossed square : a special case of a crossed rectangle where two of the sides intersect at right angles.
A = lw (rectangle). That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes ...
The large square is divided into a left and right rectangle. A triangle is constructed that has half the area of the left rectangle. Then another triangle is constructed that has half the area of the square on the left-most side. These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This ...
The diagonals divide the polygon into 1, 4, 11, 24, ... pieces. [ a ] For a regular n -gon inscribed in a circle of radius 1 {\displaystyle 1} , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n .
The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...
A square can also be defined as a parallelogram with equal diagonals that bisect the angles. If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. A square has a larger area than any other quadrilateral with the same perimeter. [7]