Ads
related to: problems involving circles grade 10generationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.
Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.
Figure 1: A solution (in purple) to Apollonius's problem. The given circles are shown in black. Figure 2: Four complementary pairs of solutions to Apollonius's problem; the given circles are black. In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1).
Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the ...
This problem is also known as the Cheating Husbands Problem, the Unfaithful Wives Problem, the Muddy Children Problem. It is logically identical to the Blue Eyes Problem . This problem also appears as a problem involving black hats and white hats in C. L. Liu's classic textbook 'Elements of Discrete Mathematics'.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Ad
related to: problems involving circles grade 10