Search results
Results From The WOW.Com Content Network
The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. [1] [2] Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs. The COP is used in thermodynamics.
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
Partition coefficient (K D) - The ratio of concentrations of a compound in two phases of a mixture of two immiscible solvents at equilibrium. Hall coefficient (electrical physics) - Relates a magnetic field applied to an element to the voltage created, the amount of current and the element thickness. It is a characteristic of the material from ...
The power coefficient [9] C P (= P/P wind) is the dimensionless ratio of the extractable power P to the kinetic power P wind available in the undistributed stream. [ citation needed ] It has a maximum value C P max = 16/27 = 0.593 (or 59.3%; however, coefficients of performance are usually expressed as a decimal, not a percentage).
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
A coefficient is a constant coefficient when it is a constant function. For avoiding confusion, in this context a coefficient that is not attached to unknown functions or their derivatives is generally called a constant term rather than a constant coefficient.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer