Search results
Results From The WOW.Com Content Network
The white area shows where the statement is false. Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent.
The converse is "If an object has color, then it is red." Objects can have other colors, so the converse of our statement is false. The negation is "There exists a red object that does not have color." This statement is false because the initial statement which it negates is true.
material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
converse The statement formed by reversing the antecedent and consequent of a conditional statement, not necessarily maintaining logical equivalence. converse domain In set theory and logic, the set of all elements that are related to any element of a given set under a specific relation. [72] converse barcan formula
This statement expresses the idea "' if and only if '". In particular, the truth value of p ↔ q {\displaystyle p\leftrightarrow q} can change from one model to another. On the other hand, the claim that two formulas are logically equivalent is a statement in metalanguage , which expresses a relationship between two statements p {\displaystyle ...
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.