Ads
related to: brain cortex function map in psychology diagram
Search results
Results From The WOW.Com Content Network
A 2-D model of cortical sensory homunculus. A cortical homunculus (from Latin homunculus 'little man, miniature human' [1] [2]) is a distorted representation of the human body, based on a neurological "map" of the areas and portions of the human brain dedicated to processing motor functions, and/ or sensory functions, for different parts of the body.
The cerebral cortex, also known as the cerebral mantle, [1] is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals.It is the largest site of neural integration in the central nervous system, [2] and plays a key role in attention, perception, awareness, thought, memory, language, and consciousness.
Cortical maps are collections (areas) of minicolumns in the brain cortex that have been identified as performing a specific information processing function (texture maps, color maps, contour maps, etc.).
Many of the existing topographic maps have been further studied or refined using fMRI. For example, Hubel and Wiesel originally studied the retinotopic maps in the primary visual cortex using single-cell recording. Recently, however, imaging of the retinotopic map in the cortex and in sub-cortical areas, such as the lateral geniculate nucleus ...
Embryonic vertebrate subdivisions of the developing human brain hindbrain or rhombencephalon is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla , pons , and cerebellum .
In a number of cases, brain areas are organized into topographic maps, where adjoining bits of the cortex correspond to adjoining parts of the body, or of some more abstract entity. A simple example of this type of correspondence is the primary motor cortex, a strip of tissue running along the anterior edge of the central sulcus. Motor areas ...
The insular cortex is a portion of the cerebral cortex folded deep within the lateral sulcus (the fissure separating the temporal lobe from the parietal and frontal lobes). The insular cortex has an important function for sending axons to the amygdala and responding to tones and somatosensory stimulation. [12]
The connectome will significantly increase our understanding of how functional brain states emerge from their underlying structural substrate, and will provide new mechanistic insights into how brain function is affected if this structural substrate is disrupted. [4] In his 2005 Ph.D. thesis, From diffusion MRI to brain connectomics, Hagmann wrote: