Ad
related to: absolute value inequality word problemsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
The absolute value | | is a norm on the vector space formed by the real or complex numbers. The complex numbers form a one-dimensional vector space over themselves and a two-dimensional vector space over the reals; the absolute value is a norm for these two structures.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
When u and v are real numbers, they can be viewed as vectors in , and the triangle inequality expresses a relationship between absolute values. Pythagorean theorem : It states that the area of the square whose side is the hypotenuse (the side opposite the right angle ) is equal to the sum of the areas of the squares on the other two sides.
(Note that the directions of the inequalities are reversed from those in the additive notation.) If Γ is a subgroup of the positive real numbers under multiplication, the last condition is the ultrametric inequality, a stronger form of the triangle inequality |a+b| v ≤ |a| v + |b| v, and | ⋅ | v is an absolute value.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...