Search results
Results From The WOW.Com Content Network
In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The simplest solution to the tautochrone problem is to note a direct relation between the angle of an incline and the gravity felt by a particle on the incline. A particle on a 90° vertical incline undergoes full gravitational acceleration g {\displaystyle g} , while a particle on a horizontal plane undergoes zero gravitational acceleration.
The original problem is in the whole space , which needs extra conditions on the growth behavior of the initial condition and the solutions. In order to rule out the problems at infinity, the Navier–Stokes equations can be set in a periodic framework, which implies that they are no longer working on the whole space but in the 3-dimensional ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The n-body problem considers n point masses m i, i = 1, 2, …, n in an inertial reference frame in three dimensional space ℝ 3 moving under the influence of mutual gravitational attraction. Each mass m i has a position vector q i. Newton's second law says that mass times acceleration m i d 2 q i / dt 2 is equal to the sum of the ...
Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...