Ad
related to: hypothalamic-pituitary-thyroid axis and interrelationship cancer cells meaning
Search results
Results From The WOW.Com Content Network
Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland. [2] The HPA, HPG, and HPT axes are three pathways in which the hypothalamus and pituitary direct neuroendocrine function.
Hypothalamic–pituitary hormones are hormones that are produced by the hypothalamus and pituitary gland. Although the organs in which they are produced are relatively small, the effects of these hormones cascade throughout the body.
Here hypothalamic neurosecretory cells release factors to the blood. Some of these factors (releasing hormones), released at the hypothalamic median eminence, control the secretion of pituitary hormones, while others (the hormones oxytocin and vasopressin) are released directly into the blood.
The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right).
The hypothalamus and the anterior pituitary are two out of the three endocrine glands that are important in cell signaling. They are both part of the HPA axis which is known to play a role in cell signaling in the nervous system. Hypothalamus: The hypothalamus is a key regulator of the autonomic nervous system.
Three endocrine glands of the hypothalamic–pituitary–gonadal axis (HPG axis) often work together and have important regulatory functions. Two other regulatory endocrine axes are the hypothalamic–pituitary–adrenal axis (HPA axis) and the hypothalamic–pituitary–thyroid axis (HPT axis).
This condition may result from allostatic responses of hypothalamus-pituitary-thyroid feedback control, dyshomeostatic disorders, drug interferences, and impaired assay characteristics in critical illness. The classical phenotype of this condition is often seen in starvation, critical illness, or patients in the intensive care unit.
That is, cancerous cells from the hypothalamus multiply and spread to the pituitary using the hypophyseal portal system as a means of transportation. However, because the portal system receives an indirect supply of arterial blood, tumor formation in the anterior pituitary is less likely than in the posterior pituitary. This is because the ...