When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    In any metric space, a Cauchy sequence is bounded (since for some N, all terms of the sequence from the N-th onwards are within distance 1 of each other, and if M is the largest distance between and any terms up to the N-th, then no term of the sequence has distance greater than + from ).

  3. Uniformly Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Uniformly_Cauchy_sequence

    A sequence of functions {f n} from S to M is pointwise Cauchy if, for each x ∈ S, the sequence {f n (x)} is a Cauchy sequence in M. This is a weaker condition than being uniformly Cauchy. In general a sequence can be pointwise Cauchy and not pointwise convergent, or it can be uniformly Cauchy and not uniformly convergent.

  4. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    (This limit exists because the real numbers are complete.) This is only a pseudometric, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an equivalence relation on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of M.

  5. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.

  6. Totally bounded space - Wikipedia

    en.wikipedia.org/wiki/Totally_bounded_space

    A metric space is said to be totally bounded if every sequence admits a Cauchy subsequence; in complete metric spaces, a set is compact if and only if it is closed and totally bounded. [2] Each totally bounded space is bounded (as the union of finitely many bounded sets is bounded).

  7. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  8. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    After formally defining the convergence of sequences and accumulation points of sequences, one can also prove the Bolzano–Weierstrass theorem using nested intervals. In a follow-up, the fact, that Cauchy sequences are convergent (and that all convergent sequences are Cauchy sequences) can be proven. This in turn allows for a proof of the ...

  9. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    By construction, every real number x is represented by a Cauchy sequence of rational numbers. This representation is far from unique; every rational sequence that converges to x is a Cauchy sequence representing x. This reflects the observation that one can often use different sequences to approximate the same real number. [6]