Search results
Results From The WOW.Com Content Network
The Lurgi–Ruhrgas process is a hot recycled solids technology, which processes fine particles of coal or oil shale sized 0.25 to 0.5 inches (6.4 to 12.7 mm). As a heat carrier, it uses spent char or spent oil shale (oil shale ash), mixed with sand or other more durable materials.
Methanol is made from methane (natural gas) in a series of three reactions: Steam reforming CH 4 + H 2 O → CO + 3 H 2 Δ r H = +206 kJ mol −1 Water shift reaction CO + H 2 O → CO 2 + H 2 Δ r H = -41 kJ mol −1 Synthesis 2 H 2 + CO → CH 3 OH Δ r H = -92 kJ mol −1. The methanol thus formed may be converted to gasoline by the Mobil ...
In the Rectisol process (licensed by both Linde AG and Air Liquide), cold methanol at approximately –40 °F (–40 °C) dissolves (absorbs) the acid gases from the feed gas at relatively high pressure, usually 400 to 1000 psia (2.76 to 6.89 MPa). The rich solvent containing the acid gases is then let down in pressure to release and recover ...
Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "coal to X" or "carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "coal to liquid fuels" (CTL). [1]
Lurgi can refer to: . Lurgi AG : The German Chemical and construction company; the Lurgi process for making gas from carbonaceous fuel under high pressure; Lurgi generator - a device used to produce gas from coal (see Gasification)
The STG+ process uses standard catalysts similar to those used in other gas to liquids technologies, specifically in methanol to gasoline processes. Methanol to gasoline processes favor molecular size- and shape-selective zeolite catalysts, [2] and the STG+ process also utilizes commercially available shape-selective catalysts, such as ZSM-5. [3]
In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H 2), carbon dioxide (CO 2), methane (CH 4), and water vapour (H 2 O)—from coal and water, air and/or oxygen. Historically, coal was gasified to produce coal gas, also known as "town gas".
Methanol cross-over and/or its effects can be alleviated by (a) developing alternative membranes (e.g. [6] [7]), (b) improving the electro-oxidation process in the catalyst layer and improving the structure of the catalyst and gas diffusion layers (e.g. [8]), and (c) optimizing the design of the flow field and the membrane electrode assembly ...